
Understanding CIL

James Crowley

Developer Fusion
http://www.developerfusion.co.uk/

Overview

 Generating and understanding CIL

 De-compiling CIL

 Protecting against de-compilation

 Merging assemblies

Common Language Runtime (CLR)

 Core component of the .NET Framework
on which everything else is built.

 A runtime environment which provides
A unified type system
Metadata
Execution engine, that deals with programs

written in a Common Intermediate Language
(CIL)

Common Intermediate Language

 All compilers targeting the CLR translate
their source code into CIL

 A kind of assembly language for an
abstract stack-based machine, but is not
specific to any hardware architecture

 Includes instructions specifically designed
to support object-oriented concepts

Platform Independence

 The intermediate language is not interpreted, but
is not platform specific.

 The CLR uses JIT (Just-in-time) compilation to
translate the CIL into native code

 Applications compiled in .NET can be moved to
any machine, providing there is a CLR
implementation for it (Mono, SSCLI etc)

Demo

 Generating IL using the C# compiler

Some familiar keywords with some additions:

.method – this is a method
hidebysig – the method hides other methods with
the same name and signature.
cil managed – written in CIL and should be
executed by the execution engine (C++ allows
portions that are not)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

.entrypoint – the program’s entry point

.maxstack 2 – specifies maximum depth of the
stack at any point during execution
.locals – defines storage locations for variables
local to this method, with new names V_0, V_1,
V_2 (replacing a, b, result)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldc.i4.s – loads the 4-byte integer constant “50”
onto the stack (“s” defines some additional
behaviours to keep the number of op-codes down)
stloc.0 – takes the top value on the stack (ie 50)
and stores it in the local variable at index 0 (ie V_0,
or “a” with our original naming)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldloc.0 and ldloc.1 – loads the value of the local
variable at index 0 (“a”) and index 1 (“b”) onto the
stack
call – makes a call to our Remainder method. The
two arguments are popped off the stack during the
call, and we get the result of the method execution
pushed back on.
Stloc.2 – store the result (which is at the top of the
stack) in local variable at index 2 (“result”)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldstr – loads the string constant onto a stack
ldloc.2 – loads the variable “result” onto the stack
box – turns the “result” variable (a value type) into
an object (reference type)
call – makes the call to WriteLine
ret – returns execution to the callee

Things to note…

 Optimisation largely occurs at the JIT
compilation stage, rather than when we
are generating IL – so that all languages
targeting the CLR can benefit.

 The underlying IL contains all the info
required to reconstruct your original
source code (minus comments and
variable names)

Demo

 Decompilation using .NET Reflector

De-compilation & Obfuscation

 Can’t easily prevent code from being
decompiled, but we can make it harder to
“understand” the intention of the code.

 Various techniques, including
variable renaming

control flow obfuscation

string encryption

Obfuscation Software

 PreEmptive - Dotfuscator (basic
community edition included in VS 2003)

 Remotesoft Obfuscator

 WiseOwl - Demeanor for .NET

Merging Assemblies

 We can combine the IL of multiple
assemblies to combine assemblies,
without access to the original source code

 For example, merging a required COM
interop wrapper into our main assembly.

ILMerge

 Utility from Microsoft Research that
automatically merges the IL and re-
compiles the assembly.

Demo

 Merging Assemblies

Wrapping Up

 Any questions?

Why do we care?

 Decompilation
 The underlying IL contains all the info required to reconstruct

your original source code (minus comments and variable names)
 .NET Reflector
 ILDASM/ILASM

 Merging multiple assemblies
 We can merge assemblies by merging their IL (ILMerge)

 New Languages
 We can implement new .NET languages provided we can emit

the correct IL

