
Understanding CIL

James Crowley

Developer Fusion
http://www.developerfusion.co.uk/

Overview

 Generating and understanding CIL

 De-compiling CIL

 Protecting against de-compilation

 Merging assemblies

Common Language Runtime (CLR)

 Core component of the .NET Framework
on which everything else is built.

 A runtime environment which provides
A unified type system
Metadata
Execution engine, that deals with programs

written in a Common Intermediate Language
(CIL)

Common Intermediate Language

 All compilers targeting the CLR translate
their source code into CIL

 A kind of assembly language for an
abstract stack-based machine, but is not
specific to any hardware architecture

 Includes instructions specifically designed
to support object-oriented concepts

Platform Independence

 The intermediate language is not interpreted, but
is not platform specific.

 The CLR uses JIT (Just-in-time) compilation to
translate the CIL into native code

 Applications compiled in .NET can be moved to
any machine, providing there is a CLR
implementation for it (Mono, SSCLI etc)

Demo

 Generating IL using the C# compiler

Some familiar keywords with some additions:

.method – this is a method
hidebysig – the method hides other methods with
the same name and signature.
cil managed – written in CIL and should be
executed by the execution engine (C++ allows
portions that are not)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

.entrypoint – the program’s entry point

.maxstack 2 – specifies maximum depth of the
stack at any point during execution
.locals – defines storage locations for variables
local to this method, with new names V_0, V_1,
V_2 (replacing a, b, result)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldc.i4.s – loads the 4-byte integer constant “50”
onto the stack (“s” defines some additional
behaviours to keep the number of op-codes down)
stloc.0 – takes the top value on the stack (ie 50)
and stores it in the local variable at index 0 (ie V_0,
or “a” with our original naming)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldloc.0 and ldloc.1 – loads the value of the local
variable at index 0 (“a”) and index 1 (“b”) onto the
stack
call – makes a call to our Remainder method. The
two arguments are popped off the stack during the
call, and we get the result of the method execution
pushed back on.
Stloc.2 – store the result (which is at the top of the
stack) in local variable at index 2 (“result”)

.method private hidebysig static void Main(string[] args) cil managed
{

.entrypoint
// Code size 31 (0x1f)
.maxstack 2
.locals init (int32 V_0,

int32 V_1,
int32 V_2)

IL_0000: ldc.i4.s 50
IL_0002: stloc.0
IL_0003: ldc.i4.s 20
IL_0005: stloc.1
IL_0006: ldloc.0
IL_0007: ldloc.1
IL_0008: call int32 ILDemo.Demo::Remainder(int32,

int32)
IL_000d: stloc.2
IL_000e: ldstr "Remainder is: {0}"
IL_0013: ldloc.2
IL_0014: box [mscorlib]System.Int32
IL_0019: call void [mscorlib]System.Console::WriteLine(string,

object)
IL_001e: ret

} // end of method Demo::Main

ldstr – loads the string constant onto a stack
ldloc.2 – loads the variable “result” onto the stack
box – turns the “result” variable (a value type) into
an object (reference type)
call – makes the call to WriteLine
ret – returns execution to the callee

Things to note…

 Optimisation largely occurs at the JIT
compilation stage, rather than when we
are generating IL – so that all languages
targeting the CLR can benefit.

 The underlying IL contains all the info
required to reconstruct your original
source code (minus comments and
variable names)

Demo

 Decompilation using .NET Reflector

De-compilation & Obfuscation

 Can’t easily prevent code from being
decompiled, but we can make it harder to
“understand” the intention of the code.

 Various techniques, including
variable renaming

control flow obfuscation

string encryption

Obfuscation Software

 PreEmptive - Dotfuscator (basic
community edition included in VS 2003)

 Remotesoft Obfuscator

 WiseOwl - Demeanor for .NET

Merging Assemblies

 We can combine the IL of multiple
assemblies to combine assemblies,
without access to the original source code

 For example, merging a required COM
interop wrapper into our main assembly.

ILMerge

 Utility from Microsoft Research that
automatically merges the IL and re-
compiles the assembly.

Demo

 Merging Assemblies

Wrapping Up

 Any questions?

Why do we care?

 Decompilation
 The underlying IL contains all the info required to reconstruct

your original source code (minus comments and variable names)
 .NET Reflector
 ILDASM/ILASM

 Merging multiple assemblies
 We can merge assemblies by merging their IL (ILMerge)

 New Languages
 We can implement new .NET languages provided we can emit

the correct IL

